A hybrid spatial data mining approach based on fuzzy topological relations and MOSES evolutionary algorithm

نویسندگان

  • Amir Hossein Goudarzi
  • Nasser Ghadiri
چکیده

Making high-quality decisions in strategic spatial planning is heavily dependent on extracting knowledge from vast amounts of data. Although many decision-making problems like developing urban areas require such perception and reasoning, existing methods in this field usually neglect the deep knowledge mined from geographic databases and are based on pure statistical methods. Due to the large volume of data gathered in spatial databases, and the uncertainty of spatial objects, mining association rules for high-level knowledge representation is a challenging task. Few algorithms manage geographical and non-geographical data using topological relations. In this paper, a novel approach for spatial data mining based on the MOSES evolutionary framework is presented which improves the classic genetic programming approach. A hybrid architecture called GGeo is proposed to apply the MOSES mining rules considering fuzzy topological relations from spatial data. The uncertainty and fuzziness aspects are addressed using an enriched model of topological relations by fuzzy region connection calculus. Moreover, to overcome the problem of time-consuming fuzzy topological relationships calculations, this a novel data pre-processing method is offered. GGeo analyses and learns from geographical and non-geographical data and uses topological and distance parameters, and returns a series of arithmetic-spatial formulas as classification rules. The proposed approach is resistant to noisy data, and all its stages run in parallel to increase speed. This approach may be used in different spatial data classification problems as well as representing an appropriate method of data analysis and economic policy making.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی روابط توپولوژیک سه بعدی فازی در محیط GIS

Nowadays, geospatial information systems (GIS) are widely used to solve different spatial problems based on various types of fundamental data: spatial, temporal, attribute and topological relations. Topological relations are the most important part of GIS which distinguish it from the other kinds of information technologies. One of the important mechanisms for representing topological relations...

متن کامل

FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING

The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.06621  شماره 

صفحات  -

تاریخ انتشار 2017